Python Tutorial - How to work with OceanWatch data in Python
This tutorial will show the steps to grab data in ERDDAP from Python, how to work with NetCDF files in Python and how to make some maps and time-series od chlorophyll-a concentration around the main Hawaiian islands
1. Downlading data from Python
Because ERDDAP includes RESTful services, you can download data listed on any ERDDAP platform from R using the URL structure. For example, the following page allows you to subset monthly Chlorophyll a data from the Aqua-MODIS sensor https://oceanwatch.pifsc.noaa.gov/erddap/griddap/OceanWatch_aqua_chla_monthly.html . Select your region and date range of interest, then select the '.nc' (NetCDF) file type and click on "Just Generate the URL".
In this specific example, the URL we generated is : https://oceanwatch.pifsc.noaa.gov/erddap/griddap/CRW_sst_v1_0_monthly.nc?analysed_sst[(2018-01-01T12:00:00Z):1:(2018-12-01T12:00:00Z)][(17):1:(30)][(195):1:(210 )]
In Python, run the following to download the data using the generated URL :
Copy import urllib . request
url = "https://oceanwatch.pifsc.noaa.gov/erddap/griddap/CRW_sst_v1_0_monthly.nc?analysed_sst[(2018-01-01T12:00:00Z):1:(2018-12-01T12:00:00Z)][(17):1:(30)][(195):1:(210)]"
urllib . request . urlretrieve (url, "sst.nc" )
Copy ('sst.nc', <http.client.HTTPMessage at 0x2a195863be0>)
2. Importing NetCDF4 data in Python
Now that we've downloaded the data locally, we can import it and extract our variables of interest.
The xarray package makes it very convenient to work with NetCDF files. Documentation is available here: http://xarray.pydata.org/en/stable/why-xarray.html
Copy import xarray as xr
import netCDF4 as nc
Open the file and load it as an xarray dataset:
Copy ds = xr . open_dataset ( 'sst.nc' ,decode_cf = False )
examine the data structure:
Copy <xarray.Dataset>
Dimensions: (latitude: 261, longitude: 301, time: 12)
Coordinates:
* time (time) float64 1.515e+09 1.517e+09 ... 1.541e+09 1.544e+09
* latitude (latitude) float32 17.025 17.075 17.125 ... 29.975 30.025
* longitude (longitude) float32 195.025 195.075 ... 209.975 210.025
Data variables:
analysed_sst (time, latitude, longitude) float64 ...
Attributes:
acknowledgement: NOAA Coral Reef Watch Program
cdm_data_type: Grid
comment: This product is designed to improve on and re...
contributor_name: NOAA Coral Reef Watch program
contributor_role: Collecting source data and deriving products;...
Conventions: CF-1.6, ACDD-1.3, COARDS
creator_email: coralreefwatch@noaa.gov
creator_institution: NOAA/NESDIS/STAR Coral Reef Watch program
creator_name: NOAA Coral Reef Watch program
creator_type: group
creator_url: https://coralreefwatch.noaa.gov/
data_source: NOAA Daily Global 5km Geo-Polar Blended Night...
date_created: 2018-01-01T00:00:00Z
date_issued: 2018-12-02T15:20:07Z
date_metadata_modified: 2018-09-01T00:00:00Z
date_modified: 2018-01-01T00:00:00Z
Easternmost_Easting: 210.025
geospatial_bounds: "POLYGON((-90.0 360.0, 90.0 360.0, 90.0 0.0, ...
geospatial_bounds_crs: EPSG:32663
geospatial_lat_max: 30.025
geospatial_lat_min: 17.025
geospatial_lat_resolution: 0.049999999999999996
geospatial_lat_units: degrees_north
geospatial_lon_max: 210.025
geospatial_lon_min: 195.025
geospatial_lon_resolution: 0.05000000000000001
geospatial_lon_units: degrees_east
history: Mon Mar 2 06:00:23 2020: ncatted -O -a geosp...
id: CoralTemp-v1.0
infoUrl: https://coralreefwatch.noaa.gov/satellite/ble...
institution: NOAA/NESDIS/STAR Coral Reef Watch program
instrument: ATSR-1, ATSR-2, AATSR, AVHRR, AVHRR-2, AVHRR-...
instrument_vocabulary: NOAA NODC Ocean Archive System Instruments
keywords: 5km, analysed, analysed_sst, analysis, blende...
keywords_vocabulary: GCMD Science Keywords
license: OSTIA Usage Statement (1985-2002): IMPORTANT ...
metadata_link: https://coralreefwatch.noaa.gov/satellite/ble...
naming_authority: gov.noaa.coralreefwatch
NCO: 4.3.7
nco_openmp_thread_number: 1
Northernmost_Northing: 30.025
platform: Ships, drifting buoys, moored buoys, TOGA-TAO...
platform_vocabulary: NOAA NODC Ocean Archive System Platforms
processing_level: L4
product_version: 1.0
program: NOAA Coral Reef Watch program
project: NOAA Coral Reef Watch program
publisher_email: coralreefwatch@noaa.gov
publisher_institution: NOAA/NESDIS/STAR Coral Reef Watch program
publisher_name: NOAA Coral Reef Watch program
publisher_type: group
publisher_url: https://coralreefwatch.noaa.gov/
references: Donlon, et al., 2011. The Operational Sea Sur...
source: OSTIA Sea Surface Temperature Reanalysis (nig...
sourceUrl: (local files)
Southernmost_Northing: 17.025
standard_name_vocabulary: CF Standard Name Table v27
summary: CoralTemp 5km gap-free analysed blended sea s...
time_coverage_duration: P1D
time_coverage_end: 2018-12-01T12:00:00Z
time_coverage_resolution: P1D
time_coverage_start: 2018-01-01T12:00:00Z
title: Sea Surface Temperature, Coral Reef Watch, Co...
Westernmost_Easting: 195.025
examine which coordinates and variables are included in the dataset:
Copy Coordinates:
* time (time) float64 1.515e+09 1.517e+09 ... 1.541e+09 1.544e+09
* latitude (latitude) float32 17.025 17.075 17.125 ... 29.925 29.975 30.025
* longitude (longitude) float32 195.025 195.075 195.125 ... 209.975 210.025
Copy Data variables:
analysed_sst (time, latitude, longitude) float64 ...
examine the structure of analysed_sst:
Copy ds . analysed_sst . shape
Our dataset is a 3-D array with 261 rows corresponding to latitudes and 301 columns corresponding to longitudes, for each of the 12 time steps.
get the dates for each time step:
Copy <xarray.DataArray 'time' (time: 12)>
array([1.514808e+09, 1.517486e+09, 1.519906e+09, 1.522584e+09, 1.525176e+09,
1.527854e+09, 1.530446e+09, 1.533125e+09, 1.535803e+09, 1.538395e+09,
1.541074e+09, 1.543666e+09])
Coordinates:
* time (time) float64 1.515e+09 1.517e+09 1.52e+09 ... 1.541e+09 1.544e+09
Attributes:
_CoordinateAxisType: Time
actual_range: [1.5148080e+09 1.5436656e+09]
axis: T
coverage_content_type: coordinate
ioos_category: Time
long_name: reference time of the sst field
standard_name: time
time_origin: 01-JAN-1970 00:00:00
units: seconds since 1970-01-01T00:00:00Z
Copy dates = nc . num2date (ds.time,ds.time.units)
dates
Copy array([datetime.datetime(2018, 1, 1, 12, 0),
datetime.datetime(2018, 2, 1, 12, 0),
datetime.datetime(2018, 3, 1, 12, 0),
datetime.datetime(2018, 4, 1, 12, 0),
datetime.datetime(2018, 5, 1, 12, 0),
datetime.datetime(2018, 6, 1, 12, 0),
datetime.datetime(2018, 7, 1, 12, 0),
datetime.datetime(2018, 8, 1, 12, 0),
datetime.datetime(2018, 9, 1, 12, 0),
datetime.datetime(2018, 10, 1, 12, 0),
datetime.datetime(2018, 11, 1, 12, 0),
datetime.datetime(2018, 12, 1, 12, 0)], dtype=object)
Creating a map for one time step
Let's create a map of SST for January 2018 (our first time step).
Copy import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from matplotlib . colors import LinearSegmentedColormap
np . warnings . filterwarnings ( 'ignore' )
Copy np . nanmin (ds.analysed_sst)
Copy np . nanmax (ds.analysed_sst)
Copy levs = np . arange ( 17.5 , 28.5 , 0.05 )
Copy jet = [ "blue" , "#007FFF" , "cyan" , "#7FFF7F" , "yellow" , "#FF7F00" , "red" , "#7F0000" ]
set color scale using the jet palette
Copy cm = LinearSegmentedColormap . from_list ( 'my_jet' , jet, N = len (levs))
Copy plt . contourf (ds.longitude, ds.latitude, ds.analysed_sst[ 0 ,:,:], levs,cmap = cm)
#plot the color scale
plt . colorbar ()
#example of how to add points to the map
plt . scatter ( range ( 202 , 206 ),np. repeat ( 26 , 4 ),c = 'black' )
#example of how to add a contour line
plt . contour (ds.longitude, ds.latitude, ds.analysed_sst[ 0 ,:,:],levels = 20 ,linewidths = 1 )
#plot title
plt . title ( "Monthly Sea Surface Temperature " + dates[ 0 ]. strftime ( ' %b %Y' ))
plt . show ()
Plotting a time series
Let's pick the following box : 18-23N, 200-206E. We are going to generate a time series of mean SST within that box.
first, let subset our data:
Copy lat_bnds , lon_bnds = [ 18 , 23 ] , [ 200 , 206 ]
da = ds . sel (latitude = slice ( * lat_bnds), longitude = slice ( * lon_bnds))
Copy plt . contourf (da.longitude, da.latitude, da.analysed_sst[ 0 ,:,:], levs,cmap = cm)
plt . colorbar ()
plt . title ( "Monthly Sea Surface Temperature " + dates[ 0 ]. strftime ( ' %b %Y' ))
plt . show ()
let's compute the monthly mean over the bounding region:
Copy res = np . mean (da.analysed_sst,axis = ( 1 , 2 ))
let's plot the time-series:
Copy plt . figure (figsize = ( 8 , 4 ))
plt . scatter (dates,res)
plt . ylabel ( 'SST (ºC)' )
Copy Text(0,0.5,'SST (ºC)')
Creating a map of average SST over a year
let's compute the yearly mean for the region:
Copy mean_sst = np . mean (ds.analysed_sst,axis = 0 )
let's plot the map of the 2018 average SST in the region:
Copy plt . contourf (ds.longitude, ds.latitude, mean_sst, levs,cmap = cm)
plt . colorbar ()
plt . title ( "Mean SST " + dates[ 0 ]. strftime ( '%Y-%m' ) + ' - ' + dates[ 11 ]. strftime ( '%Y-%m' ))
plt . show ()