1. How to work with satellite data in Python

This tutorial will show the steps to grab data in ERDDAP from Python, how to work with NetCDF files in Python and how to make some maps and time-series of sea surface temperature (SST) around the main Hawaiian islands.

This tutorial is also available as a Jupyter notebook.

You will need to install the urllib, xarray and NetCDF4 packages if you don't already have them.

Downloading data in Python

Because ERDDAP includes RESTful services, you can download data listed on any ERDDAP platform from R using the URL structure.

For example, the following page allows you to subset monthly SST data: Select your region and date range of interest, then select the '.nc' (NetCDF) file type and click on "Just Generate the URL".

In this specific example, the URL we generated is :


You can also edit this URL manually.

In Python, run the following to download the data using the generated URL :

import urllib.request url="https://oceanwatch.pifsc.noaa.gov/erddap/griddap/CRW_sst_v1_0_monthly.nc?analysed_sst[(2018-01-01T12:00:00Z):1:(2018-12-01T12:00:00Z)][(17):1:(30)][(195):1:(210)]" urllib.request.urlretrieve(url, "sst.nc")

Importing the downloaded data in R

Now that we've downloaded the data locally, we can import it and extract our variables of interest:

The xarray package makes it very convenient to work with NetCDF files. Documentation is available here: http://xarray.pydata.org/en/stable/why-xarray.html

import xarray as xr import netCDF4 as nc

  • Open the file and load it as an xarray dataset:

ds = xr.open_dataset('sst.nc',decode_cf=False)

  • examine the data structure:


Dimensions: (latitude: 261, longitude: 301, time: 12) Coordinates: *time (time) float64 1.515e+09 1.517e+09 ... 1.541e+09 1.544e+09 *latitude (latitude) float32 17.025 17.075 17.125 ... 29.975 30.025 *longitude (longitude) float32 195.025 195.075 ... 209.975 210.025 Data variables: analysed_sst (time, latitude, longitude) float64 ... Attributes: acknowledgement: NOAA Coral Reef Watch Program cdm_data_type: Grid comment: This product is designed to improve on and re... contributor_name: NOAA Coral Reef Watch program contributor_role: Collecting source data and deriving products;... Conventions: CF-1.6, ACDD-1.3, COARDS creator_email: coralreefwatch@noaa.gov creator_institution: NOAA/NESDIS/STAR Coral Reef Watch program creator_name: NOAA Coral Reef Watch program creator_type: group creator_url: https://coralreefwatch.noaa.gov/ data_source: NOAA Daily Global 5km Geo-Polar Blended Night... date_created: 2018-01-01T00:00:00Z date_issued: 2018-12-02T15:20:07Z date_metadata_modified: 2018-09-01T00:00:00Z date_modified: 2018-01-01T00:00:00Z Easternmost_Easting: 210.025 geospatial_bounds: "POLYGON((-90.0 360.0, 90.0 360.0, 90.0 0.0, ... geospatial_bounds_crs: EPSG:32663 geospatial_lat_max: 30.025 geospatial_lat_min: 17.025 geospatial_lat_resolution: 0.049999999999999996 geospatial_lat_units: degrees_north geospatial_lon_max: 210.025 geospatial_lon_min: 195.025 geospatial_lon_resolution: 0.05000000000000001 geospatial_lon_units: degrees_east history: Mon Mar 2 06:00:23 2020: ncatted -O -a geosp... id: CoralTemp-v1.0 infoUrl: https://coralreefwatch.noaa.gov/satellite/ble... institution: NOAA/NESDIS/STAR Coral Reef Watch program instrument: ATSR-1, ATSR-2, AATSR, AVHRR, AVHRR-2, AVHRR-... instrument_vocabulary: NOAA NODC Ocean Archive System Instruments keywords: 5km, analysed, analysed_sst, analysis, blende... keywords_vocabulary: GCMD Science Keywords license: OSTIA Usage Statement (1985-2002): IMPORTANT ... metadata_link: https://coralreefwatch.noaa.gov/satellite/ble... naming_authority: gov.noaa.coralreefwatch NCO: 4.3.7 nco_openmp_thread_number: 1 Northernmost_Northing: 30.025 platform: Ships, drifting buoys, moored buoys, TOGA-TAO... platform_vocabulary: NOAA NODC Ocean Archive System Platforms processing_level: L4 product_version: 1.0 program: NOAA Coral Reef Watch program project: NOAA Coral Reef Watch program publisher_email: coralreefwatch@noaa.gov publisher_institution: NOAA/NESDIS/STAR Coral Reef Watch program publisher_name: NOAA Coral Reef Watch program publisher_type: group publisher_url: https://coralreefwatch.noaa.gov/ references: Donlon, et al., 2011. The Operational Sea Sur... source: OSTIA Sea Surface Temperature Reanalysis (nig... sourceUrl: (local files) Southernmost_Northing: 17.025 standard_name_vocabulary: CF Standard Name Table v27 summary: CoralTemp 5km gap-free analysed blended sea s... time_coverage_duration: P1D time_coverage_end: 2018-12-01T12:00:00Z time_coverage_resolution: P1D time_coverage_start: 2018-01-01T12:00:00Z title: Sea Surface Temperature, Coral Reef Watch, Co... Westernmost_Easting: 195.025

  • examine which coordinates and variables are included in the dataset:


Coordinates: *time (time) float64 1.515e+09 1.517e+09 ... 1.541e+09 1.544e+09 *latitude (latitude) float32 17.025 17.075 17.125 ... 29.925 29.975 30.025 *longitude (longitude) float32 195.025 195.075 195.125 ... 209.975 210.025


Data variables: analysed_sst (time, latitude, longitude) float64 ...

  • examine the structure of analysed_sst:


(12, 261, 301)

Our dataset is a 3-D array with 261 rows corresponding to latitudes and 301 columns corresponding to longitudes, for each of the 12 time steps.

  • get the dates for each time step:

dates=nc.num2date(ds.time,ds.time.units) dates

array([datetime.datetime(2018, 1, 1, 12, 0), datetime.datetime(2018, 2, 1, 12, 0), datetime.datetime(2018, 3, 1, 12, 0), datetime.datetime(2018, 4, 1, 12, 0), datetime.datetime(2018, 5, 1, 12, 0), datetime.datetime(2018, 6, 1, 12, 0), datetime.datetime(2018, 7, 1, 12, 0), datetime.datetime(2018, 8, 1, 12, 0), datetime.datetime(2018, 9, 1, 12, 0), datetime.datetime(2018, 10, 1, 12, 0), datetime.datetime(2018, 11, 1, 12, 0), datetime.datetime(2018, 12, 1, 12, 0)], dtype=object)

Working with the extracted data

Creating a map for one time step

Let's create a map of SST for January 2018 (our first time step).

import pandas as pd import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap np.warnings.filterwarnings('ignore')

  • set some color breaks





levs = np.arange(17.5, 28.5, 0.05)

  • define a color palette

jet=["blue", "#007FFF", "cyan","#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"]

  • set color scale using the jet palette

cm = LinearSegmentedColormap.from_list('my_jet', jet, N=len(levs))

  • plot the SST map

plt.contourf(ds.longitude, ds.latitude, ds.analysed_sst[0,:,:], levs,cmap=cm)

  • plot color scale


  • example of how to add points to the map


  • example of how to add a contour line

plt.contour(ds.longitude, ds.latitude, ds.analysed_sst[0,:,:],levels=20,linewidths=1)

  • plot title

plt.title("Monthly Sea Surface Temperature " + dates[0].strftime('%b %Y')) plt.show()

Plotting a time series

Let's pick the following box : 18-23N, 200-206E. We are going to generate a time series of mean SST within that box.

  • first, let subset our data:

lat_bnds, lon_bnds = [18, 23], [200, 206] da=ds.sel(latitude=slice(lat_bnds), longitude=slice(lon_bnds))

  • let's plot the subset:

  • let's compute the monthly mean over the bounding region:


  • let's plot the time-series:

plt.figure(figsize=(8,4)) plt.scatter(dates,res) plt.ylabel('SST (ºC)')

Creating a map of average SST over a year

  • let's compute the yearly mean for the region:


  • let's plot the map of the 2018 average SST in the region:

plt.contourf(ds.longitude, ds.latitude, mean_sst, levs,cmap=cm) plt.colorbar() plt.title("Mean SST " + dates[0].strftime('%Y-%m')+' - '+dates[11].strftime('%Y-%m')) plt.show()

Last updated